Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Se Pu ; 42(4): 360-367, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566425

RESUMO

The macroporous anion exchange chromatographic medium (FastSep-PAA) was prepared through grafting polyallylamine (PAA) onto polyacrylate macroporous microspheres (FastSep-epoxy). The effects of the synthesis conditions, including the PAA concentration, reaction time, and reaction solution pH, on the ion exchange (IC) of the medium were investigated in detail. When the PAA concentration, reaction time, and reaction solution pH were increased, the IC of the medium increased, and optimal synthesis conditions were then selected in combination with changes of protein binding capacity. A scanning electron microscope was used to examine the surface morphology of the medium. The medium possessed high pore connectivity. Furthermore, the pore structure of the medium was preserved after the grafting of PAA onto the macroporous microspheres. This finding demonstrates that the density of the PAA ligands does not appear to have any discernible impact on the structure of the medium; that is, no difference in the structure of the medium is observed before and after the grafting of PAA onto the microspheres. The pore size and pore-size distribution of the medium before and after grafting were determined by mercury intrusion porosimetry and the nitrogen adsorption method to investigate the relationship between pore size (measured in the range of 300-1000 nm) and protein adsorption. When the pore size of the medium was increased, its protein binding capacity did not exhibit any substantial decrease. An increase in pore size may hasten the mass transfer of proteins within the medium. Among the media prepared, that with a pore size of 400 nm exhibited the highest dynamic-binding capacity (DBC: 70.3 g/L at 126 cm/h). The large specific surface area of the medium and its increased number of protein adsorption sites appeared to positively influence its DBC. When the flow rate was increased, the protein DBC decreased in media with original pore sizes of less than 700 nm. In the case of the medium with an original pore size of 1000 nm, the protein DBC was independent of the flow rate. The protein DBC decreased by 3.5% when the flow rate was increased from 126 to 628 cm/h. In addition, the protein DBC was maintained at 57.7 g/L even when the flow velocity was 628 cm/h. This finding reveals that the diffusion rate of protein molecules at this pore size is less restricted and that the prepared medium has excellent mass-transfer performance. These results confirm that the macroporous polymer anion exchange chromatographic medium developed in this study has great potential for the high-throughput separation of proteins.


Assuntos
Poliaminas , Proteínas , Cromatografia por Troca Iônica/métodos , Adsorção , Proteínas/química , Ânions
3.
Am J Infect Control ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38281685

RESUMO

BACKGROUND: Patients with neurocritically illness are an under-recognized population at high risk of sepsis. We aimed to investigate the prevalence, early predictors, and outcomes of sepsis in neuro-ICU. METHODS: Daily and accumulative incidences of sepsis in neuro-ICU were explored. Demographics, medical history, baseline disease severity scores, and baseline biomarkers regarding inflammation, immunology, organ function, and nutritional status were collected and analyzed as potential predictors of sepsis. Logistic regression analyses were used to determine the independent predictors, and a nomogram was used to estimate the individual probability of sepsis in neuro-ICU. RESULTS: 153 patients were included in this study. Fifty-nine (38.6%) patients developed sepsis, and 21 (14%) patients developed septic shock. More than 86% of the septic cases occurred within the first week. Sequential organ failure assessment score ((relative risk) RR 1.334, P = .026), history of diabetes (RR 2.346, P = .049), and transferrin (RR 0.128, P = .042) on admission are independent predictors of sepsis. Septic patients had significantly higher mortality (P = .011), higher medical cost (P = .028), and a lower rate of functional independence (P = .010), compared to patients without sepsis. CONCLUSIONS: Sepsis afflicted more than one-third of neurocritically-ill patients and occurred mostly in the first week of admission. History of diabetes, serum transferrin, and sequential organ failure assessment score on admission were early predictors. Sepsis led to significantly worse outcomes and higher medical costs.

4.
Plant Sci ; 337: 111874, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742724

RESUMO

Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.

5.
Front Plant Sci ; 14: 1201553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528988

RESUMO

In woody plants, bark is an important protective tissue which can participate in photosynthesis, manage water loss, and transport assimilates. Studying the bark anatomical traits can provide insight into plant environmental adaptation strategies. However, a systematic understanding of the variability in bark anatomical traits and their drivers is lacking in woody plants. In this study, the bark anatomical traits of 23 Picea species were determined in a common garden experiment. We analyzed interspecific differences and interpreted the patterns in bark anatomical traits in relation to phylogenetic relationships and climatic factors of each species according to its global distribution. The results showed that there were interspecific differences in bark anatomical traits of Picea species. Phloem thickness was positively correlated with parenchyma cell size, possibly related to the roles of parenchyma cells in the radial transport of assimilates. Sieve cell size was negatively correlated with the radial diameter of resin ducts, and differences in sieve cells were possibly related to the formation and expansion of resin ducts. There were no significant phylogenetic signals for any bark anatomical trait, except the tangential diameter of resin ducts. Phloem thickness and parenchyma cell size were affected by temperature-related factors of their native range, while sieve cell size was influenced by precipitation-related factors. Bark anatomical traits were not significantly different under wet and dry climates. This study makes an important contribution to our understanding of variability in bark anatomical traits among Picea species and their ecological adaptations.

6.
Front Plant Sci ; 14: 1192371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496863

RESUMO

Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5'-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants.

7.
Int Urol Nephrol ; 55(7): 1685-1692, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37145376

RESUMO

PURPOSE: The risk of thermal damage increases with the introduction of high-power lasers during holmium laser lithotripsy. This study aimed to quantitatively evaluate the temperature change of renal calyx in the human body and the 3D printed model during high-power flexible ureteroscopic holmium laser lithotripsy and map out the temperature curve. METHODS: The temperature was continuously measured by a medical temperature sensor secured to a flexible ureteroscope. Between December 2021 and December 2022, willing patients with kidney stones undergoing flexible ureteroscopic holmium laser lithotripsy were enrolled. High frequency and high-power settings (24 W, 80 Hz/0.3 J and 32 W, 80 Hz/0.4 J) were performed for each patient with room temperature (25 °C) irrigation. In the 3D printed model, we studied more holmium laser settings (24 W, 80 Hz/0.3 J, 32 W, 80 Hz/0.4 J and 40 W, 80 Hz/0.4 J) with warmed (37 °C) and room temperature (25 °C) irrigation. RESULTS: Twenty-two patients were enrolled in our study. With 30 ml/min or 60 ml/min irrigation, the local temperature of the renal calyx did not reach 43 °C in any patient under 25 °C irrigation after 60 s laser activation. There were similar temperature changes in the 3D printed model with the human body under the irrigation of 25 °C. Under the irrigation of 37 °C, the temperature rise slowed down, but the temperature in the renal calyces was close to or even exceeded the 43 °C at the setting of 32 W, 30 ml/min and 40 W, 30 ml/min after continuing laser activation. CONCLUSION: In the irrigation of 60 ml/min, the temperature in the renal calyces can still be maintained within a safe range after continuous activation of a holmium laser up to 40 W. However, continuous activation of 32 W or higher power holmium laser in the renal calyces for more than 60 s in the limited irrigation of 30 ml/min can cause excessive local temperature, in such situation room temperature perfusion at 25 ℃ may be a relatively safer option.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Humanos , Temperatura , Ureteroscopia , Hólmio , Lasers de Estado Sólido/uso terapêutico , Temperatura Alta
8.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176812

RESUMO

The effects of tree age on the growth of cutting seedlings propagated from ancient trees have been an important issue in plant breeding and cultivation. In order to understand seedling growth and stress resistance stability, phenotypic measurements, physiological assays, and high-throughput transcriptome sequencing were performed on sown seedlings propagated from 5-year-old donors and cutting seedlings propagated from 5-, 300-, and 700-year-old Platycladus orientalis donors. In this study, the growth of cutting seedlings propagated from ancient trees was significantly slower; the soluble sugar and chlorophyll contents gradually decreased with the increase in the age of donors, and the flavonoid and total phenolic contents of sown seedlings were higher than those of cutting seedlings. Enrichment analysis of differential genes showed that plant hormone signal transduction, the plant-pathogen interaction, and the flavone and flavonol biosynthesis pathways were significantly up-regulated with the increasing age of cutting seedlings propagated from 300- and 700-year-old donors. A total of 104,764 differentially expressed genes were calculated using weighted gene co-expression network analysis, and 8 gene modules were obtained. Further, 10 hub genes in the blue module were identified, which revealed that the expression levels of JAZ, FLS, RPM1/RPS3, CML, and RPS2 increased with the increase in tree age. The results demonstrated that the age of the donors seriously affected the growth of P. orientalis cutting seedlings and that cutting propagation can preserve the resistance of ancient trees. The results of this study provide important insights into the effects of age on asexually propagated seedlings, reveal potential molecular mechanisms, and contribute to an improvement in the level of breeding and conservation of ancient germplasm resources of P. orientalis trees.

9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108331

RESUMO

To evaluate the effects of donor ages on growth and stress resistance of 6-year-old seedlings propagated from 5-, 2000-, and 3000-year-old Platycladus orientalis donors with grafting, cutting, and seed sowing, growth indicators and physiological and transcriptomic analyses were performed in 6-year-old seedlings in winter. Results showed that basal stem diameters and plant heights of seedlings of the three propagation methods decreased with the age of the donors, and the sown seedlings were the thickest and tallest. The contents of soluble sugar, chlorophyll, and free fatty acid in apical leaves of the three propagation methods were negatively correlated with donor ages in winter, while the opposite was true for flavonoid and total phenolic. The contents of flavonoid, total phenolic, and free fatty acid in cutting seedlings were highest in the seedlings propagated in the three methods in winter. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of differentially expressed genes showed phenylpropanoid biosynthesis and fatty acid metabolism pathways, and their expression levels were up-regulated in apical leaves from 6-year-old seedlings propagated from 3000-year-old P. orientalis donors. In addition, hub genes analysis presented that C4H, OMT1, CCR2, PAL, PRX52, ACP1, AtPDAT2, and FAD3 were up-regulated in cutting seedlings, and the gene expression levels decreased in seedlings propagated from 2000- and 3000-year-old donors. These findings demonstrate the resistance stability of cuttings of P. orientalis and provide insights into the regulatory mechanisms of seedlings of P. orientalis propagated from donors at different ages in different propagation methods against low-temperature stress.


Assuntos
Plântula , Thuja , Plântula/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Perfilação da Expressão Gênica , Clorofila/metabolismo , Thuja/genética , Regulação da Expressão Gênica de Plantas
10.
Plants (Basel) ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986954

RESUMO

Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.

11.
Front Immunol ; 14: 1115031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860868

RESUMO

Background: Inflammatory mechanisms play important roles in intracerebral hemorrhage (ICH) and have been linked to the development of stroke-associated pneumonia (SAP). The neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) are inflammatory indexes that influence systemic inflammatory responses after stroke. In this study, we aimed to compare the predictive value of the NLR, SII, SIRI and PLR for SAP in patients with ICH to determine their application potential in the early identification of the severity of pneumonia. Methods: Patients with ICH in four hospitals were prospectively enrolled. SAP was defined according to the modified Centers for Disease Control and Prevention criteria. Data on the NLR, SII, SIRI and PLR were collected at admission, and the correlation between these factors and the clinical pulmonary infection score (CPIS) was assessed through Spearman's analysis. Results: A total of 320 patients were enrolled in this study, among whom 126 (39.4%) developed SAP. The results of the receiver operating characteristic (ROC) analysis revealed that the NLR had the best predictive value for SAP (AUC: 0.748, 95% CI: 0.695-0.801), and this outcome remained significant after adjusting for other confounders in multivariable analysis (RR=1.090, 95% CI: 1.029-1.155). Among the four indexes, Spearman's analysis showed that the NLR was the most highly correlated with the CPIS (r=0.537, 95% CI: 0.395-0.654). The NLR could effectively predict ICU admission (AUC: 0.732, 95% CI: 0.671-0.786), and this finding remained significant in the multivariable analysis (RR=1.049, 95% CI: 1.009-1.089, P=0.036). Nomograms were created to predict the probability of SAP occurrence and ICU admission. Furthermore, the NLR could predict a good outcome at discharge (AUC: 0.761, 95% CI: 0.707-0.8147). Conclusions: Among the four indexes, the NLR was the best predictor for SAP occurrence and a poor outcome at discharge in ICH patients. It can therefore be used for the early identification of severe SAP and to predict ICU admission.


Assuntos
Pneumonia , Acidente Vascular Cerebral , Estados Unidos , Humanos , Neutrófilos , Pneumonia/diagnóstico , Inflamação , Hemorragia Cerebral/diagnóstico , Linfócitos
12.
Biochem Genet ; 61(1): 390-409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35930171

RESUMO

Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Camundongos , Masculino , Humanos , Neoplasias da Próstata/genética , Carcinogênese , Apoptose , Modelos Animais de Doenças , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Culina/genética
13.
Am J Cancer Res ; 13(12): 6190-6209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187041

RESUMO

This study aimed to summarize the current developments and hub genes in the ferroptosis field using bibliometrics and bioinformatics and provide guidance for future developments. The publications on ferroptosis from 2012 to 2021 were extracted from the Web of Science database. VOSviewer software and CiteSpace software were used to visualize and predict the trend of ferroptosis research. The key genes related to ferroptosis were selected from the Web of Genecards, and Kyoto Encyclopedia of Genes and Genomes (KEGG)/Gene Ontology (GO) analysis was performed. Cytoscape software and online survival curve analysis platform were also used to screen hub genes and analyze their roles. Chinese researchers published the highest number of publications in this field, while American publications exhibited higher quality. In terms of institutions, Central South University and Zhejiang University have the highest number of publications. Cell Death Disease published more studies than other journals. The application of ferroptosis is a major research area, and, importantly, "RCD", "FTH1", and "nomogram" are the keywords. We also found tumor-related pathways of interest in the field of ferroptosis. Sirtuin 3 (SIRT3), Glutathione Peroxidase 4 (GPX4), and transferrin receptor (TFRC) genes were of significance for the prognosis of tumors. The number of publications on ferroptosis may increase in the future. Cooperation among countries and disciplines is particularly important in this regard. Also, the applications of ferroptosis, especially in chemotherapy and immunotherapy for tumors, will be the focus of future research. Keywords "RCD", "FTH1", and "nomogram" is receiving high attention, and in-depth studies on tumor-related genes SIRT3, GPX4, and TFRC may provide new therapeutic targets.

14.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559624

RESUMO

The occurrence of adventitious roots and somatic embryos is a crucial step in micropropagation that frequently limits the application of this technique in woody plants. Recent studies demonstrated that they can be negatively or positively regulated with γ-aminobutyric acid (GABA), which is a four-carbon non-proteinous amino acid that not only acts as a main inhibitory neurotransmitter in mammals. It has been reported that GABA affects plant growth and their response to stress although its mode of action is still unclear. This review dealt with the effects of GABA on adventitious root formation and growth as well as on somatic embryogenesis. Furthermore, we focused on discussing the interaction of GABA with phytohormones, such as auxin, ethylene, abscisic acid, and gibberellin, as well as with the carbon and nitrogen metabolism during adventitious root development. We suggested that research on GABA will contribute to the application of micropropagation in the recalcitrant fruit and forest species.

15.
Plants (Basel) ; 11(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365446

RESUMO

Genome-wide single nucleotide polymorphism (SNP) markers were obtained by genotyping-by-sequencing (GBS) technology to study the genetic relationships, population structure, gene flow and selective sweeps during species differentiation of Picea wilsonii, P. neoveitchii and P. likiangensis from a genome-wide perspective. We used P. jezoensis and P. pungens as outgroups, and three evolutionary branches were obtained: P. likiangensis was located on one branch, two P. wilsonii populations were grouped onto a second branch, and two P. neoveitchii populations were grouped onto a third branch. The relationship of P. wilsonii with P. likiangensis was closer than that with P. neoveitchii. ABBA-BABA analysis revealed that the gene flow between P. neoveitchii and P. wilsonii was greater than that between P. neoveitchii and P. likiangensis. Compared with the background population of P. neoveitchii, the genes that were selected in the P. wilsonii population were mainly related to plant stress resistance, stomatal regulation, plant morphology and flowering. The genes selected in the P. likiangensis population were mainly related to plant stress resistance, leaf morphology and flowering. Selective sweeps were beneficial for improving the adaptability of spruce species to different habitats as well as to accelerate species differentiation. The frequent gene flow between spruce species makes their evolutionary relationships complicated. Insight into gene flow and selection pressure in spruce species will help us further understand their phylogenetic relationships and provide a scientific basis for their introduction, domestication and genetic improvement.

16.
Environ Monit Assess ; 194(5): 344, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389092

RESUMO

Tree tissues can accumulate heavy metals from the environment. We therefore aimed to evaluate the presence of the metals Pb, Cr, Mn, Cu, and Zn in four street tree species, namely Ailanthus altissima, Broussonetia papyrifera, Pinus tabuliformis, and Rhus typhina, along the highway side of Beijing, China. Sampling from the leaves, trunk bark, and branch annual segment bark of trees was conducted in the summer of 2021, and the concentration of heavy metals was determined. The results revealed the highest average concentration of total heavy metals in the R. typhina leaves (23.724 mg/kg) and barks (14.454 mg/kg). The maximum bio-concentration factor was noted for Zn in the B. papyrifera leaves (0.36) and P. tabuliformis barks (0.21). The maximum comprehensive bio-concentration index was observed for the B. papyrifera leaves (0.225) and P. tabuliformis bark (0.108). The maximum metal accumulation index was measured in the R. typhina leaves (29.682) and bark (12.407). Based on the air-originated metals, P. tabuliformis showed the highest dust collection capacity. In general, B. papyrifera and P. tabuliformis exhibited the highest absorption rate from the soil relative to the other studied species. R. typhina demonstrated the strongest phytoremediation ability for heavy metal pollution in air. In addition, our results proved that the branch annual segment bark of P. tabuliformis is an excellent record carrier that can be used to monitor heavy metal pollution in a specific time duration in an urban area.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Biológico , China , Cidades , Monitoramento Ambiental/métodos , Metais Pesados/análise , Casca de Planta/química , Folhas de Planta/química , Poluentes do Solo/análise , Árvores
17.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3674-3680, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33300717

RESUMO

Drought is a main factor affecting the growth and yield of Chinese chestnut trees in Yan-shan Mountains. To investigate the responses of chestnut seedlings to drought stress, the growth and physiological indices, including photosynthetic characteristics, biomass, proline, malondialdehyde, carbon and nitrogen contents were measured in roots, stems, and leaves after the Chinese chestnut 'Yanshanzaofeng' seedlings in the pots were treated by simulating drought for 22 days. The results showed that, compared with the normal irrigation, water contents in the roots, stems and leaves were decreased by 18.3%, 29.0% and 62.8%, respectively, accompanied by the considerable increases in the contents of proline (355.0%-1586.7%) and malondialdehyde except in the stems (41.1%-81.3%). The non-photochemical quenching coefficiency and net photosynthetic rate in the leaves were significantly decreased by 49.4% and 77.4%, respectively. The contents of non-structural carbohydrates were increased by 21.4% in stems and 69.5% in leaves, but that in roots did not change. The contents of nitrate were increased by 28.9% in stems and 26.8% in leaves, but that in roots did not change. Ammonium nitrogen was increased by 16.2%, 12.9% and 217.6% in roots, stems, and leaves, but being statistically significant in the leaves. These results indicated that drought stress led to serious damage to 'Yanshanzaofeng' chestnut seedlings, which inhibited photosynthetic performance, but they could improve their adaptation to drought stress by enhancing carbon and nitrogen metabolism. Our results provide a reference for the breeding and cultivation of drought resistance of the local Chinese chestnut resources.


Assuntos
Secas , Plântula , Povo Asiático , Carbono , Humanos , Nitrogênio , Fotossíntese
18.
Electron. j. biotechnol ; 47: 1-9, sept. 2020. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1224606

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) bypasses the TCA cycle via GABA shunt, suggesting a relationship with respiration. However, little is known about its role in seed germination under salt conditions. RESULTS: In this study, exogenous GABA was shown to have almost no influence on mungbean seed germination, except 0.1 mM at 10 h, while it completely alleviated the inhibition of germination by salt treatment. Seed respiration was significantly inhibited by 0.1 and 0.5 mM GABA, but was evidently enhanced under salt treatment, whereas both were promoted by 1 mM GABA alone or with salt treatment. Mitochondrial respiration also showed a similar trend at 0.1 mM GABA. Moreover, proteomic analysis further showed that 43 annotated proteins were affected by exogenous GABA, even 0.1 mM under salt treatment, including complexes of the mitochondrial respiratory chain. CONCLUSIONS: Our study provides new evidence that GABA may act as a signal molecule in regulating respiration of mungbean seed germination in response to salt stress.


Assuntos
Sementes/crescimento & desenvolvimento , Vigna , Ácido gama-Aminobutírico , Respiração , Estresse Fisiológico , Proteínas , Germinação , Proteômica , Tolerância ao Sal , Estresse Salino
19.
Tree Physiol ; 40(12): 1744-1761, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32776117

RESUMO

Nitrogen (N) deficiency adversely affects tree growth. Additionally, γ-aminobutyric acid (GABA) is closely associated with growth and stress responses because of its effects on carbon (C) and N metabolism. However, little is known about its roles related to plant adaptations to N-deficient conditions. In this study, we analyzed the effects of GABA (0, 2 and 10 mM) applications on the growth traits and physiological responses of poplar (Populus alba × P. glandulosa '84K') seedlings under high N (HN) and low N (LN) conditions. We found that the added GABA interacted with N to affect more than half of the studied parameters, with greater effects in LN plants than in HN plants. Under LN conditions, the GABA application tended to increase poplar growth, accompanied by increased xylem fiber cell length and xylem width. In stems, exogenous GABA increased the abundance of non-structural carbohydrates (starch and sugars) and tricarboxylic acid cycle intermediates (succinate, malate and citrate), but had the opposite effect on the structural C contents (hemicellulose and lignin). Meanwhile, exogenous GABA increased the total soluble protein contents in leaves and stems, accompanied by significant increases in nitrate reductase, nitrite reductase and glutamine synthetase activities in leaves, but significant decreases in those (except for the increased glutamate synthetase activity) in stems. A multiple factorial analysis indicated that the nitrate assimilation pathway substantially influences poplar survival and growth in the presence of GABA under LN conditions. Interestingly, GABA applications also considerably attenuated the LN-induced increase in the activities of leaf antioxidant enzymes, including peroxidase and catalase, implying that GABA may regulate the relative allocation of C and N for growth activities by decreasing the energy cost associated with stress defense. Our results suggest that GABA enhances poplar growth and adaptation by regulating the C and N metabolic flux under N-deficient conditions.


Assuntos
Populus , Plântula , Carbono , Nitrogênio , Folhas de Planta , Raízes de Plantas , Ácido gama-Aminobutírico
20.
Plants (Basel) ; 9(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260136

RESUMO

Recalcitrant chestnut seeds are rich in γ-aminobutyric acid (GABA), which negatively regulates adventitious root development by altering carbon/nitrogen metabolism. However, little is known regarding the role of this metabolite in chestnut seeds. In this study, we investigated the effects of GABA changes on the germination of chestnut seeds treated with exogenous GABA and vigabatrin (VGB, which inhibits GABA degradation). Both treatments significantly inhibited seed germination and primary root growth and resulted in the considerable accumulation of H2O2, but the endogenous GABA content decreased before germination at 48 h. Soluble sugar levels increased before germination, but subsequently decreased, whereas starch contents were relatively unchanged. Changes to organic acids were observed at 120 h after sowing, including a decrease and increase in citrate and malate levels, respectively. Similarly, soluble protein contents increased at 120 h, but the abundance of most free amino acids decreased at 48 h. Moreover, the total amino acid levels increased only in response to VGB at 0 h. Accordingly, GABA and VGB altered the balance of carbon and nitrogen metabolism, thereby inhibiting chestnut seed germination. These results suggested that changes to GABA levels in chestnut seeds might prevent seed germination. The study data may also help clarify the dormancy and storage of chestnut seeds, as well as other recalcitrant seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...